Equations and Inequalities

Solve the equations and the inequalities:

1. 2x-3=4x-12. $x^2-3x+2=0$ 3. 2x+3>5. 4. $-3x+1\le x+9$ 5. |x-3|<36. $|2x+3|\ge 1$ 7. |2x+3|=78. $x^2-4x+3<0$ 9. $(x-3)(2x+4)\ge 0$ 10. x(x-2)(x-5)>0Solutions 1.

2x-4x=-1+3

-2x=2

x=2/(-2)

x=-1

2.

Use the quadratic formula or factoring to solve the equation:

 $\frac{x^2-2x-x+2=0}{x(x-1)-2(x-1)=0}$

(x-1)(x-2)=0

Thus the equation has the solution x=1 and x=2.

3.		
2x+3>5		
2x>5-3		
2x>2		
x>1		
x€(1,∞)		
4.		
-3x+1≤x+9		

-3x-x≤9-1

-4x≤8

x≥8/(-4)

x≥-2

x€[-2,∞)

5.

|x-3|<3

-3<x-3<3

-3+3<x<3+3

0<x<6

x€(0,6)

6.

|2x+3|≥1

2x+3≥1 or 2x+3≤-1

2x≥1-3 or 2x≤-1-3

2x≥-2 or 2x≤-4

x≥-1 or x≤-2

x€(-∞,-2] U [-1,∞)

7.

|2x+3|=7

2x+3 =7 or 2x+3=-7

2x=7-3 or 2x=-7-3

2x=4 or 2x=-10

x=2 or x=-5

x€{-5,2}

8.

x²-4x+3<0

We first solve $x^{2}-4x+3=0$ $x^{2}-3x-x+3=0$ x(x-1)-3(x-1)=0(x-1)(x-3)=0 x=1 or x=3 So the solution of the inequality $x^{2}-4x+3<0$ (x-1)(x-3)<0 is $x \in (1,3)$ 9. We first solve the equation (x-3)(2x+4)=0 x-3=0 or 2x+4=0 x=3 or x=-4/2 x=3 or x=-2

So the solution of $(x-3)(2x+4) \ge 0$ is

x€(-∞,-2] U [3, ∞)

10.

We first solve the equation x(x-2)(x-5)=0; x=0 or x=2 or x=5

To solve x(x-2)(x-5)>0 we make a table

x		0	2	5	+∞	
х						
x-2	0++++++++++++++++++++++++++++++++					
x-5	0+++++++++++++++++++++++++++++++++					
x(x-2)(x-5)						

and we get x(x-2)(x-5)>0 for x€(0,2) U (5,∞)

Lines, circles, ellipses, hyperbolas, parabolas

1. Find an equation of the line that passes through (-1,0) and has slope 6.

2. Find an equation of the line with slope 3 and y-intercept 1.

3. Find an equation of the line that passes through (-1,3) and it is parallel to the line 2x+y=3.

4. Find an equation of the line that passes through (5,-1) and it is perpendicular to the line

4x-8y=16.

5. The equation

 $x^2 + y^2 + 5x + 6 = 0$

represents a with radius R=.... and center with coordinates x_0 =..... and y_0 =...... 6. The equation x=-3y²+1 represents a symmetric with the ...- axis that opens to the

7. The equation

 $y = x^2 - 3x + 2$

represents a that opens and has vertex with coordinates x0=.... and y0=.....

8. The equation

 $y=3x^{2}-15x+12$

represents a with vertex with coordinates x0=.... and y0=..... and x -intercepts x1=..... and x2=....., and y-intercept y1=.....

Solutions

1.

From the point-slope formula we have

y-0=6(x+1)

y=6x+6

2.

From the slope-intercept formula we have

y=3x+1

3.

For the line 2x+y=3

y=-2x+3

the slope is -2. Since the two lines are parallel, they have the same slope -2.

From the point-slope equation we have

y-3=-2(x+1)

y=-2x-2+3

y=-2x+1

4.

For the line 4x-8y=16

8y=4x-16

y=1/2 x-2

the slope is 1/2. Since the two lines are perpendicular, the slope of the second line should be -2. Thus, from the point-slope equation we have

```
y+1=-2(x-5)
y+1=-2x+10
y=-2x+10-1
y=-2x+9
```

```
5.

x^{2} + y^{2} + 5x + 6 = 0

x^{2} + 5x + y^{2} + 6 = 0
```

We complete the square:

$$x^{2} + 2\frac{5}{2}x + \left(\frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} + y^{2} + 6 = 0$$
$$\left(x + \frac{5}{2}\right)^{2} - \frac{25}{4} + y^{2} + 6 = 0$$
$$\left(x + \frac{5}{2}\right)^{2} + y^{2} - \frac{25}{4} + \frac{24}{4} = 0$$
$$\left(x + \frac{5}{2}\right)^{2} + y^{2} - \frac{1}{4} = 0$$
$$\left(x + \frac{5}{2}\right)^{2} + y^{2} = \frac{1}{4}$$

Thus we have a circle with center (-5/2,0) and radius 1/2.

6.

x=- $3y^2$ +1 represents a parabola symmetric with the x-axis because the equation is unchanged if we replace y by -y (we have y^2). -3<0 so the parabola opens to the left.

The vertex is at (1,0).

7.

We have a parabola that opens up (the coefficient of x^2 is =1>0). To find the vertex we complete the square:

$$y = x^{2} - 3x + 2$$

$$y = x^{2} - 2\frac{3}{2}x + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} + 2$$

$$y = \left(x - \frac{3}{2}\right)^{2} - \frac{9}{4} + 2$$

$$y = \left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + \frac{8}{4}$$
$$y = \left(x - \frac{3}{2}\right)^2 - \frac{1}{4}$$

So the vertex has coordinates x0=3/2 and y0=-1/4. 8.

The equation represents a parabola that opens up. To find the vertex we complete the square: $y = 3(x^2 - 5x + 4)$

$$y = 3\left(x^{2} - 2\frac{5}{2}x + \left(\frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} + 4\right)$$

$$y = 3\left(\left(x - \frac{5}{2}\right)^{2} - \frac{25}{4} + 4\right)$$

$$y = 3\left(\left(x - \frac{5}{2}\right)^{2} - \frac{25}{4} + \frac{16}{4}\right)$$

$$y = 3\left(\left(x - \frac{5}{2}\right)^{2} - \frac{9}{4}\right)$$

$$y = 3\left(x - \frac{5}{2}\right)^{2} - 3\frac{9}{4}$$

$$y = 3\left(x - \frac{5}{2}\right)^{2} - \frac{27}{4}$$

Thus the vertex is (5/2, -27/4). To find the y-intercept we make x=0 in y=3x²⁻15x+12 and we get y1=12.

To find the x-intercepts we make y=0 in y= $3x^{2}$ -15x+12 and we get $3x^{2}$ -15x+12 = 0We solve the quadratic equation using the quadratic formula or factoring. $3(x^{2} - 5x + 4) = 0$

$$3(x^{2} - 5x + 4) = 0$$

$$x^{2} - 5x + 4 = 0$$

$$x^{2} - 4x - x + 4 = 0$$

$$x(x - 1) - 4(x - 1) = 0$$

$$(x - 1)(x - 4) = 0$$

Thus the x-intercepts are $x_{1=1}$ and $x_{1=4}$.

Trigonometry

sin (π/6)=.....
 tan(π/4)=......
 sin² x+cos²x=....
 If cos x=1/3 and 3π/2<x<2π, find sin x.
 If tan x=1/2 find cot x.
 If sin x=2/3 and π/2<x<π find sec x.

7. Find the values of $x \in [0,2\pi]$ that satisfy the equation $|\cot x| = \sqrt{3}$ 8. Find the values of $x \in [0,2\pi)$ that satisfy the equation $\sin 2x = \sin x$ 9. Find $\cos x$ if $\cos 2x = \frac{7}{9}$

Solutions

1. sin ($\pi/6$)=1/2 2. $tan(\pi/4)=1$ 3. $\sin^2 x + \cos^2 x = 1$ 4. Since $\sin^2 x + \cos^2 x = 1$ we have $\sin^2 x + \left(\frac{1}{3}\right)^2 = 1$ $\sin^2 x = 1 - \frac{1}{9}$ $\sin^2 x = \frac{9}{9} - \frac{1}{9}$ $\sin^2 x = \frac{8}{9}$ Because $3\pi/2 < x < 2\pi$, sinx < 0, so $\sin x = -\frac{\sqrt{8}}{3}$ $\sin x = -\frac{2\sqrt{2}}{3}$ 5. Please memorise the trigonometric formulas! cot x=1/tan x so cot x=2 6. Because

Because $\sin^2 x + \cos^2 x = 1$ we have

 $\left(\frac{2}{3}\right)^2 + \cos^2 x = 1$ $\cos^2 x = 1 - \frac{4}{9}$ $\cos^2 x = \frac{9}{9} - \frac{4}{9}$ $\cos^2 x = \frac{5}{9}$ Since $\pi/2 < x < \pi$, cos x<0 and $\cos x = -\frac{\sqrt{5}}{3}$ $\sec x = \frac{1}{\cos x} = -\frac{3}{\sqrt{5}}$ 7. $|\cot x| = \sqrt{3}$ $\cot x = \sqrt{3}$ or $\cot x = -\sqrt{3}$ But we know $\cot\frac{\pi}{6} = \sqrt{3}$ so we have $x_1 = \frac{\pi}{6}, x_2 = \frac{7\pi}{6}$ $x_3 = \frac{5\pi}{6}, x_4 = \frac{11\pi}{6}$ 8. $\sin 2x = \sin x$ $2\sin x\cos x = \sin x$ $\sin x \left(2\cos x - 1 \right) = 0$ $\sin x = 0 \quad \lim_{x \to \infty} 2\cos x - 1 = 0$ $\sin x = 0 \quad \text{or} \quad \cos x = 1/2$ But $\sin 0 = 0 \quad \cos \frac{\pi}{3} = 1/2$ So $x_1 = 0, x_2 = \pi$ $x_3 = \frac{\pi}{3}, x_4 = \frac{5\pi}{3}$ 9.

$$\cos 2x = \frac{7}{9}$$

$$2\cos^2 x - 1 = \frac{7}{9}$$

$$2\cos^2 x = 1 + \frac{7}{9}$$

$$2\cos^2 x = \frac{9}{9} + \frac{7}{9}$$

$$2\cos^2 x = \frac{16}{9}$$

$$\cos^2 x = \frac{8}{9}$$

$$\cos x = -\frac{\sqrt{8}}{3} \text{ or } \cos x = \frac{\sqrt{8}}{3}$$